BENEFITS AND SAFETY OF MULTIGENE PANEL TESTING IN PATIENTS AT RISK FOR HEREDITARY BREAST CANCER

N.S. Kapoor, L.D. Curcio, C.A. Blakemore, A.K. Bremner, R.E. McFarland, J.G. West, K. C. Banks

BACKGROUND

- Genetic testing for hereditary breast cancer risk has been in rapid evolution.
- Conventional testing required initial testing for BRCA1/2 mutations followed by sequential testing for other breast cancerrelated gene mutations when applicable.
- New multi-gene panel testing evaluates up to 43 genetic mutations at once, including BRCA1/2.
- Some concern has been raised regarding the ability of multigene panel tests to evaluate BRCA1/2 genetic mutations.

OBJECTIVES

- Compare multigene panel testing with limited BRCA1/2 testing in the detection of pathogenic BRCA1/2 mutations and variants of uncertain significance (VUS).
- Evaluate total yield of pathogenic mutations detected by multigene panels.

METHODS

Data was collected retrospectively from 966 patients who underwent genetic testing at one of three Breastlink sites from January 2008 to September 2014 while under the supervision of a breast surgeon. Test results for 629 patients who received limited BRCA1/2 testing were compared with test results for 337 patients who received multigene panel testing through Ambry Genetics for 5 to 43 breast cancer-related genes. Multivariate analysis was used to control for variables.

Persona Median Persona Ethnicit

Cau

Unk

Family

≥1 Fami Breast C

Family

Pathoge

Variant in BRCA

	Limited Group n=629		Panel Group n=337		<i>p</i> -Value
I History of Breast Cancer	443	70.3	205	60.8%	0.003
Age at Breast Cancer Onset	49		52.5		0.002
I History of Ovarian Cancer	10	1.6	6	1.8%	NS
					0.006
n American	11	1.7%	3	0.9%	
	23	3.8%	22	6.5%	
sian	377	59.9%	180	53.5%	
nic	13	2.1%	25	7.4%	
nazi Jewish	52	8.4%	48	7.4%	
e Eastern	15	2.4%	7	2.1%	
ole Ethnicities	49	7.8%	37	11.0%	
American	2	0.3%	1	0.3%	
own/Other	87	13.5%	14	4.2%	
istory of Breast Cancer	484/620	78.1%	248	73.6%	NS
y Member with ancer at Age <50	264/620	42.6%	127	37.7%	
istory of Ovarian Cancer	132/620	21.3%	67	19.9%	NS
nic BRCA 1/2 mutation	25	4.0%	12	3.6%	NS
of Uncertain Significance 1/2	28	4.5%	11	3.3%	NS

RESULTS

Pathogenic BRCA1/2 mutations were identified in 37 patients, with equivalent rates between limited and multigene panel groups. Of patients undergoing multigene testing, an additional 13 had non-BRCA pathogenic mutations. Mutations in PALB2, CHEK2 and ATM were the most common non-BRCA1/2 mutations observed. A total of 39 patients had BRCA1/2 VUS, with similar rates between limited and multigene groups. An additional 45 patients in the multigene group had non-BRCA1/2 VUS.

CONCLUSIONS

- Multigene panel testing safely and effectively evaluates BRCA1/2 pathogenic mutations and VUS.
- Pathogenic mutations in non-BRCA1/2 genes have important implications for risk management and treatment algorithms.

Nimmi.Kapoor@breastlink.com

*Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO

Poster Board #D8

Abstract ID: 16(154875)

PATHOGENIC MUTATIONS DETECTED LIMITED GROUP PANEL GROUP Evaluates BRCA1/2 genes only Evaluates up to 43 genes 3.9% L BRCA1/2 RCA1/ 3.4% .5 **TOTAL MUTATIONS** DETECTED

FREQUENCY OF VUS IN MULTIGENE GROUP

- Multigene panel testing nearly doubles the total rate of detection of pathogenic mutations.
- Breast surgeons and oncologists have an important opportunity to discuss the benefits of multigene panel testing with their patients.